已知ab都大于1,logaC·logbC=4,求证ab≥C

热心网友

证明:由已知, logaC·logbC=4 (lgC)^2=4*lga*lgb (1) 由均值定理,上式可化为: (lgC)^20 (lga+lgb)=lgc lgab=lgc 证毕

热心网友

若0c若C1,则logaC0,logbC01/(logaC·logbC)=logC(a)·logC(b)=1/4logC(a)+logC(b)≥2√[logC(a)·logC(b)]=2*(1/2)=1即logC(ab)≥1=logC(C)ab≥C所以ab≥C