在直角三角型ABC中,斜边BC=1,AD为BC上的高,求AD4次方/AB4次方+2AD4次方/AC4次方的最小值为?BC/DC=?

热心网友

1.解:AD^4/AB^4+2AD^4/AC^4=sinB^4+2sinC^4=cosC^4+2sinC^4=cosC^4+sinC^4+sinC^4=(cosC^2+sinC^2)^2-2sinC^2*(cosC^2)+sinC^4=1-2sinC^2*(1-sinC^2)+sinC^4=1-2sinC^2+2sinC^4+sinC^4=3sinC^4-2sinC^2+1=3[sicC^2-(1/3)}^2+(2/3)≥(2/3) 当且仅当sicC=√(1/3)时“=”号成立-------------------------------BC=AC/cosC;DC=AC*cosCBC/DC=(AC/cosC)/(AC*cosC)=1/cosC^2=1/(1/3)=3