请打开word附件查看,并在其中作答。提问指数:90

热心网友

看附件:

热心网友

1)1/(1*2)+1/(2*3)+1/(3*4)+......+1/[n(n+1)]=(2-1)/(1/2)+(3-2)/(2*3)+(4-3)/(3*4)+......+[(n+1)-n]/[n(n+1)]=(1-1/2)+(1/2-1/3)+(1/3-1/4)+......-[1/n-1/n+1)]=1-1/(n+1)=n/(n+1)2)Sn=2n^2-3n=n(2n-3)a1=S1=2-3=-1,an=Sn-S(n-1)=n(2n-3)-(n-1)(2n-5)=(2n^2-3n)-(2n^2-7n+5)=4n-5 (n=2)n=1时,适合此公式,所以an=4n-5(n∈N+)