设数列{an}中,a1=1且当时n>=2时,(2n+1)an=(2n-3)an-1求的通项公式及前n项和

热心网友

an/a(n-1)=(2n-3)/(2n+1).........a(n-1)/a(n-2)=(2n-5)/(2n-1).....a(n-2)/a(n-3)=(2n-7)/(2n-3).........................a4/a3=5/9.......................a3/a2=3/7.......................a2/a1=1/5.......................以上n-1个式子相乘得:an/a1=3/(2n+1)(2n-1),而a1=1,所以an=3/(2n+1)(2n-1) (n≥2),而当n=1时a1=3/(2+1)(2-1)=1,所以对于一切n都有an=3/(2n+1)(2n-1)