AB=AC∠BAD=90AH垂直BC证AD^2-AC^2=BD*CD

热心网友

解:在Rt⊿AHD中,由勾股定理得:AD^2 = DH^2+AH^2 在Rt⊿AHB中,由勾股定理得:AB^2 = BH^2+AH^2 因⊿ABC中,AB=AC ,AH⊥BC 所以BH=HC AD^2-AC^2=AD^2-AB^2 =DH^2+AH^2-(AH^2+BH^2) =DH^2+AH^2-AH^2-BH^2 =DH^2-BH^2 =(DH+BH)(DH-BH) 而DH+BH=BD ;DH-BH=DH-HC=DC 所以:AD^2-AC^2=BD*DC 图见附件

热心网友

AD^2-AC^2=AD^2-AB^2=DH^2+AH^2-(AH^2+BH^2)=DH^2-BH^2=(DH-BH)(DH=BH)=(DH-HC)BD=BD*DC用到的定理自己上书上找去