我急着要答案
热心网友
应该是X2+ XY+ Y2=0,则(X/X+ Y)的2005次方+ (Y/X +Y)的2005次吧!由x^2+xy+y^2=0得(x+y)^2=xy,故有(x+y)^2004=(xy)^1002及(x-y)(x^2+xy+y^2)=0,所以有x^3=y^3所以[x/(x+y)^]2005+[y/(x+y)^]2005 =(x^2005+y^2005)/(x+y)^2005 =[(x^3)^668*x+(y^3)^668*y]/(x+y)^2005 =(x^3)^668/(x+y)^2004 =(x^3)^668/(xy)^1002 =(x^3)^668/(x^3)^334*(y^3)^334 =(x^3)^668/(x^3)^668 =1