tanA=√3 cotB,求(2+cos2A)(2+cos2B)=?

热心网友

∵tanA=√3 cotB ∴tanA/cotB=tgA*tgB=√3(2+cos2A)(2+cos2B)=[2+(1-tgA^2)/(1+tgA^2)]*[2+(1-tgB^2)/(1+tgB^2)] 万能公式=[(3+tgA^2)/(1+tgA^2)]*[(3+tgB^2)/(1+tgB^2)]=(9+3tgA^2+3tgB^2+tgA^2*tgB^2)/(1+tgA^2+tgB^2+tgA^2*tgB^2)=(9+3tgA^2+3tgB^2+3)/(1+tgA^2+tgB^2+3) ∵tgA*tgB=√3=(12+3tgA^2+3tgB^2)/(4+tgA^2+tgB^2)=[3×(4+tgA^2+tgB^2)]/(4+tgA^2+tgB^2)=3