1、根据条件求m的值已知方程xx+4x+m=0与方程2xx-3x+m=4有一个相同的根2、在实数范围内因式分解2xx+xy-3yy+x+4y-16xx-xy-15yy-5x+21y-6-10xx+23xy+5yy-13x-8y+33、解方程:(x+1)(x+2)(x-4)(x-5)=40(x+1)的4次方+(x+3)的4次方=706 问题补充:不许使用凑根的方法要下过程

热心网友

1。解:设这个相同的根是a,则aa+4a+m=0且2aa-3a+m=4。两式相减,得aa-7a=4,即aa=7a+4。把aa=7a+4代入aa+4a+m=0,得7a+4+4a+m=0,即m=-11a-4。由aa-7a=4解得a1=(7+√65)/2,a2=(7-√65)/2。把a1,a2的值分别代入m=-11a-4得m=(-85-11√65)/2或m=(-85+11√65)/2。2。解:(1)2xx+xy-3yy+x+4y-1=2xx+(y+1)x+(-3yy+4y-1)=2xx+(y+1)x-(3y-1)(y-1)=[2x+(3y-1)][x-(y-1)]=(2x+3y-1)(x-y+1);(2)6xx-xy-15yy-5x+21y-6=6xx-(y+5)x-(15yy-21y+6)=6xx-(y+5)x-(5y-2)(3y-3)=[3x-(5y-2)][2x+(3y+3)]=(3x-5y+2)(2x+3y+3);(3)-10xx+23xy+5yy-13x-8y+3=-(10xx-23xy-5yy+13x+8y-3)=-[10xx-(23y-13)x-(5yy-8y+3)]=-[10xx-(23y-13)x-(5y-3)(y-1)]=-[5x+(y-1)][2x-(5y-3)]=-(5x+y-1)(2x-5y+3)。3。解:(1)(x+1)(x+2)(x-4)(x-5)=40[(x+1)(x-4)][(x+2)(x-5)]=40,(x^2-3x-4)(x^2-3x-10)=40,(x^2-3x-4)[(x^2-3x-4)-6]=40,(x^2-3x-4)^2-6(x^2-3x-4)-40=0,(x^2-3x-4-10)(x^2-3x-4+4)=0,即x^2-3x-14=0,或x^2-3x=0。解之,得x1=(3+√65)/2,x2=(3-√65)/2,x3=0,x4=3。(2) (x+1)^4+(x+3)^4=706 ,设x+2=y, 则原方程即为(y-1)^4+(y+1)^4=706,即(y^2-2y+1)^2+(y^2+2y+1)^2=706,y^4+4y^2+1-4y^3-4y+2y^2+y^4+4y^2+1+4y^3+4y+2y^2=706,2y^4+12y^2+2-706=0,y^4+6y^2-352=0。y^2=-3+19=16(舍去负值),所以,y1=4,y2=-4。所以,x1=4-2=2,x2=-4-2=-6。。