已知数列{An}中,A1=a>0,An+1=An-(1/An)其中n∈N正.若A3>0,求a的取值范围注意:An+1是指脚标n+1不是(An)+1

热心网友

由An+1=An-(1/An)得A2=A1-(1/A1) =a-(1/a) =(a+1)(a-1)/a A3=A2-(1/A2) =[(a+1)(a-1)/a]-[a/(a+1)(a-1)] =[(a^2+a-1)(a^2-a-1)]/[a(a+1)(a-1)]由条件A30, 即[(a^2+a-1)(a^2-a-1)]/[a(a+1)(a-1)]0考虑到a0,解上面不等式,有a(1+√5)/2或0

热心网友

A1=a;A2=a-1/a=(a^2-1)/a;A3=(a^2-1)/a-a/(a^2-1)=[(a^2-1)^2-a^2]/[a(a^2-1)]=[(a^2+a-1)(a^2-a-1)]/[a(a+1)(a-1)]0a^2+a-1=[aa+(1+5^.5)/2]*[a+(1-5^.5)/2]a^2-a-1=[a-(1+5^.5)/2]*[a-(1-5^.5)/2]因为,商式大于零等价于“分子、分母之积大于零”。于是可以运用“零点分区法”来解决问题。因为:(-1-5^.5)/20-10001(1+5^.5)/2............A30使得A30的a的范围是:((-1-5^.5)/2,-1)并((1-5^.5)/2,0)并((-1+5^.5)/2,1)并((1+5^.5)/2,+无穷)

热心网友

A1=a,A2=a-(1/a),A3=[a-(1/a)]-1/[a-(1/a)]A30,[a-(1/a)]-1/[a-(1/a)]0当a-(1/a)0时,a^21,a1,[a-1/a]^21,a-1/a1,a^2-a-10,[a-(1+genhao5)/2][a-(1-genhao5)/2]0,a-(1+genhao5)/20,a(1+genhao5)/2当a-(1/a)o,0(1+genhao5)/2或0

热心网友

A2=a-1/a,A3=a2-1/a2=[(a^2+a-1)(a^2-a-1)]/[a(a+1)(a-1)]0,a+10,1)a1:无解。2)a<1:0