求证三角形ABC中,若A:B:C=4:2:1,则(1/a)+(1/b)=1/c
热心网友
三角形ABC中,A:B:C=4:2:1,则:A=4π/7,B=2π/7,C=π/7由正弦定理:a/sinA = b/sinB = c/sinC = 2R== 1/a + 1/b =(1/2R)*(1/sinA +1/sinB)= (1/2R)*[1/sin(4π/7) + 1/sin(2π/7)]= (1/2R)*[sin(4π/7) +sin(2π/7)]/[sin(4π/7)sin(2π/7)]= (1/2R)*[2*sin(3π/7)*cos(π/7)]/[sin(π-4π/7)*2*sin(π/7)cos(π/7)]= (1/2R)*[1/sin(π/7)]= 1/c
热心网友
你的A B C表示什么??a b c又表示什么???