设a+b+c=1,a^2+b^2+c^2=1,且a>b>c,求证:(-1/3)<c<0.

热心网友

a+b+c=1 = (a+b+c)^2 = a^2+b^2+c^2 +2*(ab+bc+ca) = 1a^2+b^2+c^2=1 == ab+bc+ca = ab+c(a+b) = ab +c(1-c) = 0 ..(1)== a,b,c中,至少有一个小于零。abc 所以:c 2ab +c^2 ...(2)(1)(2): 3*c^2 -2c -1 -1/3 < c < 1 ...(3)因此,-1/3 < c < 0