已知:acosx+bsinx=c,acosy+bsiny=c(abc不等于零,(y-x)/2不等于k派(就是3.14159...),k为整数)证:a/cos((x+y)/2)=b/sin((x+y)/2)=c/cos((x-y)/2)

热心网友

解: acosx+bsinx=c,。。。。(1) acosy+bsiny=c。。。。。(2)(1)-(2)得:a×(cosx-cosy)+b×(sinx-siny)=0和差化积 -2a ×sin[(x+y/)2]×sin[(x-y/)2]+2b×cos[(x+y/)2]× sin [(x-y/)2]=0sin[(x-y/)2]×{2b×cos[(x+y/)2]-2a ×sin[(x+y/)2}=0∵(y-x)/2不等于π ∴sin[(x-y/)2]≠0∴2b×cos[(x+y/)2]-2a ×sin[(x+y/)2=0 ∴ a/cos[(x+y)/2]=b/sin[(x+y)/2](1)-(2)得:a×(cosx+cosy)+b×(sinx+siny)=2c2a×cos[(x+y)/2]×cos[(x-y)/2]+2b×sin[(x+y)/2]×cos[(x-y)/2]=2c 即a×cos[(x+y)/2]=b×sin[(x+y)/2]=c/cos[(x+y)/2]∵a/cos[(x+y)/2]=b/sin[(x+y)/2] ∴a=b×cos[(x+y)/2]/sin[(x+y)/2]式左=b×{cos[(x+y)/2]}^2/sin[(x+y)/2]+b×{sin[(x+y)/2]}^2/sin[(x+y)/2]=b×1/sin[(x+y)/2]=式右=c/cos[(x+y)/2]∴a/cos((x+y)/2)=b/sin((x+y)/2)=c/cos((x-y)/2) 。