求证:x^2+y^2+1≥x+y+xy

热心网友

令Z=x^2+y^2+1-(x+y+xy)= x^2-(1+y)x+y^2+1-y△=-3(y-1)^2≤0,所以Z≥0,所以 x^2+y^2+1≥x+y+xy 成立