1 已知tga=1/(n+1),tgb=1/(n^2+n+1),求tg(a+b)的值头昏了....~~ 过程~~~ 谢谢咯....~~

热心网友

tg(a+b)=(tga+tgb)/(1-tgatgb)=[1/(n+1)+1/(n^2+n+1)]/[1-1/(n+1)*1/(n^2+n+1)]=[(n^2+n+1)+(n+1)]/[(n+1)(n^2+n+1)-1]=(n^2+2n+2)/(n^3+n^2+2n)=(n^2+2n+2)/[n(n^2+2n+2)]=1/n如果n算作是已知的,这就是结果。

热心网友

tg(a+b)=(tga+tgb)/(1-tga*tgb)=[1/(n+1)+1/(n^2+n+1)]/[1-1/(n+1)*1/(n^2+n+1)分子分母同时乘以(n+1)(n^2+n+1)得tg(a+b)=(n^2+2n+2)/(n^3+2n^2+2n)=1/N

热心网友

我都做完了,才发现已有大师领先一步了.答案就是1/n.过程也正确!!

热心网友

tg(a+b)= 括号1/(n+1)+1/(n^2+n+1)/括号/1-1/(n+1)*1/(n^2+n+1)=n^2+4n+4/n^3+3n^2+4n

热心网友

tg(A+B)=(1-tgAtgB)/tgA+tgB代入咯~~不知道这公式对不对,一忘了:(是倒了:(应该是这样的吧?哎~~~ tanA+tanBtan(A+B)=—————— 1-tanA ·tanB