设函数f(x)=sinx,g(x)=-9(x/π)^2+9(x/π)-3/4,则使g(x)≥f(x)的x的取值范围是?请写明详细过程,谢谢!
热心网友
解:g(x)=-9(x/π)^+9(x/π)-3/4=-9(x/π-1/2)^+3/2∴f(x),g(x)的对称轴都是x=π/2,在x∈[0,π]上开口向下的,当x=π/6或x=5π/6时,f(x)=g(x)=1/2.则使g(x)≥f(x)的x的取值范围,x∈(π/6x,5π/6).
设函数f(x)=sinx,g(x)=-9(x/π)^2+9(x/π)-3/4,则使g(x)≥f(x)的x的取值范围是?请写明详细过程,谢谢!
解:g(x)=-9(x/π)^+9(x/π)-3/4=-9(x/π-1/2)^+3/2∴f(x),g(x)的对称轴都是x=π/2,在x∈[0,π]上开口向下的,当x=π/6或x=5π/6时,f(x)=g(x)=1/2.则使g(x)≥f(x)的x的取值范围,x∈(π/6x,5π/6).