an是首项为1的正项数,且(n+1){a(n+1)}^2-(nan)+a(n+1)an=0 (n属于1 ,2 ,3……) 则它的通项公式an

热心网友

an是首项为1的正数,且(n+1){a(n+1)}^-(nan)^+a(n+1)an=0 (n属于1,2,3……) 则它的通项公式an 解:∵a1=1,(n+1){a(n+1)}^2-(nan)^+a(n+1)an=0 ∵an是正数,∴上式两边同除以a(n+1)an,有:(n+1)a(n+1)/an-nan/a(n+1)+1=0令:a(n+1)/an=bn0则:(n+1)bn-n/bn+1=0,(n+1)bn^+bn-n=0[bn+1][(n+1)bn-n]=0∵bn+10,bn=n/(n+1)=[1/(n+1)]/[1/n]∴an=1/n