若向量组{a1,a2,a3,a4}线性无关,则向量组a1+a2,a2+a3,a3+a4,a4+a1 ( )A 线性无关B 线性相关C 线性关系与具体的 ai有关D 无法确定请问应该选哪一个,为什么,谢谢师长的指教
热心网友
解:设 k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0展开得 (k1+k4)a1+(k1+k2)a2+(k2+k3)a3+(k3+k4)a4=0因为向量组{a1,a2,a3,a4}线性无关所以必有 k1+k4=0;k1+k2=0;k2+k3=0;k3+k4=0;解得k1=k3,k2=k4,无法确定是否为0。显见k的取值和ai值无关,只和它们的线形组合有关。所以应选 D 无法确定