y=[(x^2-4)^(1/2)]/[log2^(x^2-2x-3)]求定义域
热心网友
y=[(x^2-4)^(1/2)]/[log2^(x^2-2x-3)]求定义域 ={x|x^2-4≥0且log2^(x^2-2x-3)≠0}={x|x^2≥4且(x+1)(x-3)≠0}={x|x≥2且x≠3,或x≤-2}=(-∞,-2]∪[2,3)∪(3,+∞)
热心网友
if x^2 - 4 \ge 0, then x \ge 2 or x \le -2,if x^2 - 2x -3 \in R, then x \in R, if [log2^(x^2-2x-3)] \ne 0, then 2^(x^2-2x-3) \ne 1, so x^2-2x-3 \ne 0, x \ne 3 and x \ne -1, then the resutl is (x \ge 2 or x \le -2) and (x\ne 3).