如图所示

热心网友

注意:当x=0 的时候 f(x)=0 (1)再根据求导公式求f'(0)实际上是让你求x趋向于0时f(x)/x的极限这类问题都这么解的。只要 满足上面的条件(1)求f'(0)都是类似的解法

热心网友

应用导数定义,有:f'(0)=Lim{x→0}[f(x)-f(0)]/[x-0],而f(0)=0,从而,f‘(0)=lim{x→0}[(x-1)(x-2)...(x-99)]=-99!

热心网友

强 就一个字

热心网友

强!

热心网友

f'(0)=Lim{x→0}[f(x)-f(0)]/[x]=Lim{x→0}[(x-1)(x-2)(x-3)......(x-99)]==[(-1)(-2)(-3)......(-99)]=-99!

热心网友

厉害

热心网友

f(x)=x(x-1)(x-2)(x-3)......(x-99)f'(x)=x'[(x-1)(x-2)(x-3)......(x-99)]+x[(x-1)(x-2)(x-3)......(x-99)]'=f(x)/x+x{(x-1)'[(x-2)(x-3)......(x-99)]+(x-1)[(x-2)(x-3)......(x-99)]'}=f(x)/x+f(x)/(x-1)+x(x-1){(x-2)'[(x-3)......(x-99)]+(x-2)[(x-3)......(x-99)]'}=.......=f(x)/x+f(x)/(x-1)+f(x)/(x-1)+......+f(x)/(x-99)∴f'(0)=(x-1)(x-2)(x-3)......(x-99)=-99!