已知x,y属于R,且x^2+y^2<=1,求|x+y|+|y+1|+|2y-x-4|的范围
热心网友
已知x,y属于R,且x^+y^≤1,求|x+y|+|y+1|+|2y-x-4|的范围 解:∵x^+y^≤1∴|x|≤1,|y|≤1∴|y+1|=y+1,|2y-x-4|=|4-2y+x|=4-2y+x∴|x+y|+|y+1|+|2y-x-4|=|x+y|+y+1+4-2y+x=|x+y|+5-y+x①当x+y≥0|x+y|+|y+1|+|2y-x-4|=x+y+5-y+x=5+2x5-√2≤5+2x≤7[注:x=1,y=0,5+2x=7,满足x+y≥0.x=-√2/2,y=√2/2,5+2x=5-√2,满足x+y≥0]②当x+y<0|x+y|+|y+1|+|2y-x-4|=-x-y+5-y+x=5-2y5-√2<5-2y≤7[注:x=0,y=-1,5+2x=7,满足x+y<0.x=-√2/2,y<√2/2,5+2x=5-√2,满足x+y<0]∴综合①,②得5-√2≤|x+y|+|y+1|+|2y-x-4|≤7或解:令x=Rcosθ,y=Rsinθ.0≤R≤1原式=|Rcosθ+Rsinθ|+|Rsinθ+1|+|2Rsinθ-Rcosθ-4|=√2R|sin(θ+45°)|+Rsinθ+1-(2Rsinθ-Rcosθ-4)=√2R|sin(θ+45°)|+5-Rsinθ+Rcosθ=√2R|sin(θ+45°)|+5+√2Rcos(θ+45°)令φ=θ+45°.0°≤φ≤360°∴原式=5+√2R|sinφ|+√2Rcosφ①当0°≤φ≤180°时:sinφ≥0∴原式=5+√2Rsinφ+√2Rcosφ=5+2Rsin(φ+45°)45°≤(φ+45°)≤225°当φ+45°=90°R=1,原式取最大值7当φ+45°=225°R=1原式取最小值5-√2②当180°≤φ<360°时:sinφ<0∴原式=5-√2Rsinφ+√2Rcosφ=5+2Rcos(φ+45°)225°≤(φ+45°)<405°当φ+45°=360°R=1,原式取最大值7当φ+45°=225°R=1原式取最小值5-√2∴综合①,②得5-√2≤|x+y|+|y+1|+|2y-x-4|≤7。