设x y z为不全为零的实数,则(xy+2yz)/(x^2+y^2+z^2)的最大值
热心网友
设x y z为不全为零的实数,则(xy+2yz)/(x^+y^+z^)的最大值 解:只需要利用a+b≥2√ab[2可以省略不写]x^+y^+z^=[x^+ty^]+[(1-t)y^+z^](注:1>t>0)≥2xy√t+2yz√(1-t)∴2√t=√(1-t),即:4t=1-t,t=1/5∴x^+y^+z^=[x^+(1/5)y^]+[(4/5)y^+z^]≥2xy(√5)/5+2yz(√20)/5=[2(√5)/5]xy+[4(√5)/5]yz=[2(√5)/5](xy+2yz)∴x^+y^+z^≥2(√5)/5](xy+2yz)∵x^+y^+z^>0∴(xy+2yz)/(x^+y^+z^)≤(√5)/2则(xy+2yz)/(x^+y^+z^)的最大值 是(√5)/2