设x^2+y^2=1,且x!=-1,y!=-2,求证:2(y-x) y x------ = --- - ---1+x+y 1+x 1+y

热心网友

设x^2+y^2=1,且x!=-1,y!=-2,求证:2(y-x) y x------ = --- - ---1+x+y 1+x 1+y 证明:y/(1+x)-x/(1+y)=[y+y^2-x-x^2]/(1+x)(1+y)=[y-x+(y-x)(y+x)]/(1+x)(1+y)=(y-x)(1+x+y)/(1+x)(1+y)所以需证明2(y-x)/(1+x+y)=(y-x)(1+x+y)/(1+x)(1+y)即证明2(1+x)(1+y)=(1+x+y)^2,即证明2+2x+2y+2xy=1+2x+2y+x^2+y^2+2xy,即证明2=x^2+y^2+1,而因为x^2+y^1=1,所以x^2+y^2+1=2成立所以等式成立