已知三棱柱S-ABC三条侧棱SA,SB,SC两两垂直,它们与底面ABC成角分别为α ,β ,γ求证:SIN^2(α) +SIN^2(β )+SIN^2(γ)为定植,并求此值(注:^2是平方)

热心网友

设:SO垂直于ABC,O为垂足。AOD垂直于BC,D为垂足。则,SAD为直角三角形;SD为直角三角形ABC的高。因此,SD = SB*SC/根号(SB^2+SC^2)ctgα = SA/SD = SA*[根号(SB^2+SC^2)]/(SB*SC)(sinα)^2 = 1/[1+(ctgα)^2] = (SB*SC)^2/[(SA*SB)^2+(SB*SC)^2+(SC*SA)^2]同理:(sinβ)^2 = 1/[1+(ctgα)^2] = (SC*SA)^2/[(SA*SB)^2+(SB*SC)^2+(SC*SA)^2](sinγ)^2 = 1/[1+(ctgα)^2] = (SA*SB)^2/[(SA*SB)^2+(SB*SC)^2+(SC*SA)^2]因此:(sinα)^2 +(sinβ)^2 +(sinγ)^2 = 1,为定值。