{an}是等差数列,{bn}是等比数列,且a2=b2 >0,a4=b4 >0,a1≠a4, b1>0,试比较an与bn的大小,说明理由。

热心网友

{an}是等差数列,{bn}是等比数列,且a2=b2 >0,a4=b4 >0,a1≠a4, b1>0,试比较an与bn的大小,说明理由。 解:①设等比数列公比为q,等差数列公差为d。∵b1>0,b2>0∴q>0②∵a1≠a4,an不是常数列,∴a2≠a4即b2≠b4∴q≠1③设a2=b2=X>0,a4=b4=Y>0,X≠Y。a3=(X+Y)/2>√XY=b3,∴a3>b3又∵a1=2a2-a3=2X-(X+Y)/2=(3/2)X-(1/2)Yb1=(b2)^/b3=X^/(√XY)b1-a1=[X^/(√XY)+(1/2)Y]-(3/2)X=[X^/(2√XY)+X^/(2√XY)+(1/2)Y]-(3/2)X>3{[X^/(2√XY)][X^/(2√XY)][(1/2)Y]}^(1/3)-(3/2)X=3{(X^3)/8}^(1/3)-(3/2)X=0b1-a1>0a1<b1当n>4时,an<bn下面运用归纳法证明这个结论④先证明b5>a5,与b1>a1相同a5=2a4-a3=2Y-(X+Y)/2=(3/2)Y-(1/2)Xb5=(b4)^/b3=Y^/(√XY)b5-a5=[Y^/(√XY)+(1/2)X]-(3/2)Y=[Y^/(2√XY)+Y^/(2√XY)+(1/2)X]-(3/2)Y>3{[Y^/(2√XY)][y^/(2√XY)][(1/2)X]}^(1/3)-(3/2)Y=3{(y^3)/8}^(1/3)-(3/2)y=0∴b5>a5⑤q>1时,假设n=k(k>4)时,即:bk>ak那么n=k+1时,由b5>a5(且a4=b4=Y),Yq>Y+d∴Y(q-1)>dbk+1-bk=qbk-bk=(q-1)bk>(q-1)b4=(q-1)Y>d=ak+1-ak∴bk+1-bk>ak+1-ak∴bk+1-ak+1>bk-ak>0∴bk+1>ak+1综上所述:对于n>4的自然数有an<bn(q>1)成立。⑥(0<q<1)的还用我证明吗?。