若x,y是正数,则(x+1/2y)^2+(y+1/2x)^2的最小值是多少?
热心网友
(x+1/2y)^2+(y+1/2x)^2=x^2+ x/y +1/4y^2+ y^2+ y/x +1/4x^2 =(x^2+1/4x^2)+(y^2+1/4y^2) +(x/y+y/x)x^2+1/4x^2≥1 (成立条件x^2=0.5)y^2+1/4y^2≥1 (成立条件y^2=0.5)x/y+y/x≥2 (成立条件x=y)所以上面可以同时满足 所以最小值是4
若x,y是正数,则(x+1/2y)^2+(y+1/2x)^2的最小值是多少?
(x+1/2y)^2+(y+1/2x)^2=x^2+ x/y +1/4y^2+ y^2+ y/x +1/4x^2 =(x^2+1/4x^2)+(y^2+1/4y^2) +(x/y+y/x)x^2+1/4x^2≥1 (成立条件x^2=0.5)y^2+1/4y^2≥1 (成立条件y^2=0.5)x/y+y/x≥2 (成立条件x=y)所以上面可以同时满足 所以最小值是4