已知数列{an}中,a1=3/5,an=2-1/(an-1).(n≥2.n∈N).数列{bn}满足bn=1/(an-1)求证数列{bn}是等差数列,并写出{bn}的通项公式.
[]中为下标a[n]=2-1/a[n-1]a[n]-1=1-1/a[n-1]=(a[n-1]-1)/a[n-1]b[n]=1/(a[n]-1)=a[n-1]/(a[n-1]-1)=1+1/(a[n-1]-1)=1+b[n-1]所以{bn}是等差数列b[1]=1/(0.6-1)=-2.5所以b[n]=n-3.5