已知f(x)=asina2x + btanx+1 ,且f(-2)=4 ,那么,f(兀+2)= ?

热心网友

已知f(x)=asin2x+btanx+1 ,且f(-2)=4 ,那么,f(π+2)= ?解:设g(x)=f(x)-1=asin2x+btanx, 则g(-2)=f(-2)-1=3由因g(-x)=asin2(-x)+btan(-x)=-[asin2x+btanx]=-g(x)所以g(x)是奇函数。而g(π+2)=asin2(π+2)+btan(π+2)=asin4+btan2=g(2)=-g(-2)=-3由g(π+2)=f(π+2)-1,得f(π+2)=1+g(π+2)=-2

热心网友

设g(x)=f(x)-1=asin2x+btanx, 则g(-2)=f(-2)-1=3由因g(-x)=asin2(-x)+btan(-x)=-[asin2x+btanx]=-g(x)所以g(x)是奇函数。而g(π+2)=asin2(π+2)+btan(π+2)=asin4+btan2=g(2)=-g(-2)=-3由g(π+2)=f(π+2)-1,得f(π+2)=1+g(π+2)=-2

热心网友

n easy!!!!!!!!!!!!!!!!!!!!!!!!!!