设a是不等于0的常数,0=<f(x)<=1,f(x+a)= √1-[f(x)]^2注:(1-[f(x)]^2全在根号下)求证:2a是f(x)的周期唉...过程...先谢谢咯~~~~

热心网友

设a是不等于0的常数,0≤f(x)≤1,f(x+a)=√{1-[f(x)]^2}求证:2a是f(x)的周期f(x+2a)=f[(x+a)+a]=√{1-[f(x+a)]^2}=√{1-{1-[f(x)]^2}}=√[f(x)]^2=f(x)所以2a是f(x)的周期

热心网友

f(x+2a)=√1-f(x+a)^2=√1-1+[f(x)]^2=f(x)2a是f(x)的周期