f(x)是偶函数,g(x)是奇函数,f(x)+g(x)=1 / (x-1),求f(x)和g(x)的表达式?
热心网友
解:∵f(x)是偶函数,g(x)是奇函数∴f(-x)=f(x),g(-x)=-g(x)又f(x)+g(x)=1 / (x-1), .①∴f(-x)+g(-x)=1 / (-x-1),即f(x)-g(x)=-1 / (x+1), .②①+②得2f(x)=2/(x^2-1)所以f(x)=1/(x^2-1)①-②得2g(x)=2x/(x^2-1)所以g(x)=x/(x^2-1)所以,f(x)=1/(x^2-1),g(x)=x/(x^2-1)
热心网友
f(x)是偶函数,f(-x)=f(x)g(x)是奇函数,g(-x)=-g(x)f(x)+g(x)=1/(x-1),f(-x)+g(-x)=1/(-x-1)即:f(x)-g(x)=-1/(x+1)∴f(x)=[1/(x-1)-1/(x+1)]/2=1/(x^-1)g(x)=[1/(x-1)+1/(x+1)]/2=x/(x^-1)
热心网友
f(-x)+g(-x) = f(x)-g(x) = 1/(-x-1)联立方程,解得f(x),g(x)