已知数列{an}的前n项和Sn=n(n+1)(n+2)/3 则数列{1/an}的前n项和Tn=?(要写解题过程哦!谢谢!)

热心网友

解:由 Sn=n(n+1)(n+2)/3 可知{an}前(n-1)项和为 S(n-1)=(n-1)·n·(n+1)/3,故 an = Sn-S(n-1) = [n(n+1)/3]·[(n+2)-(n-1)]= n(n+1),则 1/an = 1/[n(n+1)]=1/n - 1/(n+1),所以{1/an}的前n项和为 Tn = (1-1/2)+(1/2-1/3)+ …… +[1/(n-1)-1/n]+[1/n-1/(n+1)]=1-1/(n+1)。(裂项求和)

热心网友

an=Sn-Sn-1=n(n+1)(n+2)/3-n(n+1)(n-1)/3=n(n+1)1/an=1/n(n+1)=1/n-1/(n+1)1/a1=1/1*2=1-1/21/a2=1/2*3=1/2-1/31/a3=1/3*4-1/3-1/4......1/a(n-1)=2/(n-1)-1/n1/an=1/n(n+1)=1/n-1/(n+1)前n项和Tn=1-1/(n+1)=n/(n+1)