解关于x的不等式:2+|logax|<|loga(ax^2)|(0<a<1)
热心网友
1.当0<x<1时不等式转化成:2+log(a)x<log(a)(ax^2)=log(a)a+log(a)(x^2)=1+2log(a)x即:2+log(a)x<1+2log(a)x 即log(a)x>1 (0<a<1) 从而解得:0<x<a2.当x=1时不等式转化成:2+log(a)1<log(a)(a) 即2<1 不等式不成立,故x=1不是不等式的解3.当x>1时不等式转化为:2-log(a)x<-2log(a)x-1 即log(a)x<-3从而解得:x>a^(-3)综上,在0<x<1时时,0<x<a;当x>1时,x>a^(-3)