已知:数列{An}前n项的和为Sn,且A1^3+A2^3+A3^3+.......+An^3=Sn^2 求证:1/A1^2+根号2/A2^2+根号3/A3^2+.......+根号n/An^2<3
热心网友
1.用归纳法易得:Ak=k。2。k1时,有k/(k-1)=1+1/(k-1)1+1/k+1/[4k^2]=[1+1/1(2k)]^2==√[k/(k-1)]1+1/1(2k)==2[√[k/(k-1)-1]1/k==1/k^(3/2)1/A1^2+√2/A2^2+√3/A3^2+.......+√n/An^2==1+1/2^(3/2)+1/3^(3/2)+...+1/n^(3/2)<<1+2{1/[√[1/(2-1)]-√[1/2]}+2{1/[√[1/(3-1)]-√[1/3]}+..++2{1/[√[1/(n-1)]-√[1/n]}=1+2-2√[1/n]<3.