ABC≠0和1,x、y、z为整数,且x+y+z=0,A的(yz)次方=B的(xz)次方yz=C的(xy)次方,求证:ABC=-1.

热心网友

ABC≠0和1,x、y、z为整数,且x+y+z=0,A^(yz)=B^(xz)=C^(xy),求证:ABC=-1.当x=y=z=0时,A、B、C可以不满足 ABC=-1 当xyz≠0时,设 |A^(yz)|=|B^(xz)|=|C^(xy)|=k则 lgk = (yz)*lg|A| = (xz)*lg|B| = (xy)*lg|C|所以lg|A|= lgk/(yz) ,lg|B|= lgk/(xz) ,lg|C|=lgk/(xy)相加得:lg|ABC|= lgk/(yz)+lgk/(xz)+lgk/(xy)即 lg|ABC| = (x+y+z)*lgk/(xyz) = 0所以 |ABC|=1 ,所以由已知得:ABC=-1 |