设a1≈√2,令a2=1+1/(1+a1).(1)证明√2介于a1,a2之间;(2)求a1,a2中那一个更接近于√2;(3)你能设计一个比a2更接近于√2的一个a3吗?并说明理由.要详细过程哟~~~~~谢谢!!!!!!!!
热心网友
解:a1≈√2(1)证明√2介于a1,a2之间;(a1-√2)(a2-√2)=(a1-√2)(1+1/(1+a1)-√2)=(a1-√2)[(1+a1)+1-√2(1+a1)]/(1+a1)=(a1-√2)[a1+2-√2-√2a1]/(1+a1)=(a1-√2)[a1(1-√2)+2-√2]/(1+a1)=(a1-√2)(a1-√2)(1-√2)/(1+a1)=(a1-√2)^(1-√2)/(1+a1)∵(a1-√2)^>0,(1-√2)<0,∵a1≈√2,∴1+a1>0∴(a1-√2)(a2-√2)<0,也就是√2介于a1,a2之间;(2)求a1,a2中那一个更接近于√2;??????需要比较|a1-√2|与|a2-√2|也就是(a1-√2)^与(a2-√2)^的大小。∵(a1-√2)^-(a2-√2)^=(a1-a2)(a1+a2-2√2)=[a1-1-1/(1+a1)][a1+1+1/(1+a1)-2√2]=[a1^-2][(a1+1)^+1-2√2(1+a1)]/(1+a1)^=[a1^-2][(a1+1)^-2√2(1+a1)+2-1]/(1+a1)^=[a1^-2]{[(a1+1)-√2]^-1}/(1+a1)^=[(a1-√2)(a1+√2)]{[a1+2-√2][a1-√2]}/(1+a1)^=(a1-√2)^(a1+√2)(a1+2-√2)/(1+a1)^∵(a1-√2)^>0,∵a1≈√2,∴(a1+√2)>0,(a1+2-√2)>0,∵(1+a1)^>0∴(a1-√2)^-(a2-√2)^>0就是|a1-√2|>|a2-√2|也就是a2比a1更接近于√2。(3)你能设计一个比a2更接近于√2的一个a3吗?并说明理由。能:a3=1+1/(a2+1)=1+1/[2+1/(1+a1)]。