已知a,b>0,且√a+√b=k√a+b,求证: |k|<= √2

热心网友

√a+√b=k√a+b == a+b+ 2√(ab) = k^2*(a+b)== a+b = 2√(ab) = (k^2 -1)(a+b) == 1 = k^2 -1 == |k| <= √2

热心网友

a0 & b0---a+b0; & √(a+b)0---(a+b)/√(a+b)=k0√a+√b=k√(a+b)---a+b+2√(ab)=k^2(a+b)---2(ab)=(k^2-1)(a+b)---2√(ab)/(a+b)=k^2-1......(*)a+b=2√(ab)---2√(ab)/(a+b)=k^2-1=k^20