求过点A(1,2)且与圆X^2+(y+2)^2=36内切的动圆圆心的轨迹方程.
热心网友
求过点A(1,2)且与圆X^2+(y+2)^2=36内切的动圆圆心的轨迹方程因为圆的圆心为P(0,-2) ,所求圆心为Q(x,y) 因为PQ = R - r所以 √[x^2+(y+2)^2] = 6 - √[(x-1)^2 +(y-2)^2]化简即可
求过点A(1,2)且与圆X^2+(y+2)^2=36内切的动圆圆心的轨迹方程.
求过点A(1,2)且与圆X^2+(y+2)^2=36内切的动圆圆心的轨迹方程因为圆的圆心为P(0,-2) ,所求圆心为Q(x,y) 因为PQ = R - r所以 √[x^2+(y+2)^2] = 6 - √[(x-1)^2 +(y-2)^2]化简即可