圆O1圆O2相交于A,B两点,过B的直线交圆O1于C,交圆O2于D,设两圆半径为R和r,(R>r)求证:AC:AD=r:R(也可证:AC:AD为定值)
证明:作圆O1直径AE,圆O2直径AF,连结CE,DF,AB,则A,B,C,E四点共圆,∠ABF=∠AEC,而∠ABD=∠AFD,又∠ACE=∠ADF=∠Rt,所以△ACE∽△ADF,所以AC:AD=2r:2R=r:R