已知x≥0,y≥0,且x+y≤2π,试求函数f(x,y)=sinx+siny-sin(x+y)的最大值和最小值。

热心网友

已知x≥0,y≥0,且x+y≤2π,试求函数f(x,y)=sinx+siny-sin(x+y)的最大值和最小值。解:f(x,y)=sinx+siny-sin(x+y)=2sin[(x+y)/2]cos[(x-y)/2]-2sin[(x+y)/2]cos[(x+y)/2]=2sin[(x+y)/2]{cos[(x-y)/2]-cos[(x+y)/2}=2sin[(x+y)/2]{cos[(x-y)/2]-cos[(x+y)/2}=4sin[(x+y)/2]sinxsiny∵x≥0,y≥0,且x+y≤2π,==〉x,y∈[0,2π],(x+y)/2∈[0,π]∴sinx,siny∈[-1,1],sin[(x+y)/2]∈[0,1]∴f(x,y)=4sin[(x+y)/2]sinxsiny∈[-4,4]