a>0,b>0,c>0,abc=1 求证:1/(a^3(b+c))+1/(c^3(a+c))+1/(c^3(b+a)) >=3/2
热心网友
a0,b0,c0,abc=1 求证:1/(a^3(b+c))+1/(b^3(c+a))+1/(c^3(a+b)) ≥3/2 解:1/(a^3(b+c))+1/(b^3(c+a))+1/(c^3(a+b))=(abc)^2[1/(a^3(b+c))+1/(b^3(c+a))+1/(c^3(a+b))]=b^2c^2/((a(b+c))+c^2a^2/(b(c+a))+a^2b^2/(c(a+b))+(ab+bc+ca)/2-(ab+bc+ca)/2=[b^2c^2/((a(b+c))+a(b+c)/4]+[c^2a^2/(b(c+a))+b(c+a)/4]+[a^2b^2/(c(a+b))+c(a+b)/4]-(ab+bc+ca)/2≥2√{[b^2c^2/((a(b+c))]·[a(b+c)/4]}+2√{[c^2a^2/(b(c+a))]·[b(c+a)/4]}+2√{[a^2b^2/(c(a+b))]·[c(a+b)/4]}-(ab+bc+ca)/2=(bc+ca+ab)-(ab+bc+ca)/2=(ab+bc+ca)/2≥(1/2)×[3×(ab·bc·ca)^(1/3)]=3/2∴1/(a^3(b+c))+1/(c^3(a+c))+1/(c^3(b+a))≥3/2 。