热心网友

已知x^2+2y^2=1,求x^2 * y^4的最值。用三元均值不等式,若a0,b0,c0,则abc≤[(a+b+c)/3]^3,当且仅当a=b=c时等号成立.x^2 * y^4=(x^2)(y^2)(y^2)≤[(x^2+y^2+y^2)/3]^3=(1/3)^3=1/27当且仅当x=y且x^2+2y^2=1即x=y=根号3/3时等号成立.

热心网友

合乎

热心网友

X^2Y^4=4*x^2*(y^2/2)*(y^2/2)<=4[(x^2+y^2)/3]^3=4/27当且仅当x^2=1/3y^2=2/3时等号成立

热心网友

已知x^2+2y^2=1,求x^2 * y^4的最值。∵x^2+2y^2=1≥3[(x^2)(y^2)(y^2)]^(1/3)=3[(x^2)(y^4)]^(1/3)∴(x^2)(y^4)≤(1/3)^3=1/27