热心网友
2y''+5y'=5xx-2x-1把y'看作未知函数(原方程中缺少y),微分算子记作D,原方程即(2D+5)y'=5xx-2x-1 == y'=(5xx-2x-1)/(5+2D)用1除以5+2D,到余式最低次幂为D^3为止(因为原方程右边的三阶导数恒等于0),商式是:1/5-(2D)/25+(4D^2)/125∴y'=[1/5-(2D)/25+(4D^2)/125](5xx-2x-1)=(1/5)(5xx-2x-1)-[(2D)/25](5xx-2x-1)+[(4D^2)/125](5xx-2x-1)=[xx-(2/5)x-1/5]-(2/25)(10x-2)+(4/125)(10)=[xx-(2/5)x-1/5]-[(4/5)x-4/25]+8/25=x^2-(6/5)x+7/25两边积分,得到原方程的解:y=(1/3)x^3-(3/5)x^2+(7/25)x+C(C为任意常数)。