设21x^2+ax+21可分解为两个一次因式的积,且各因式的系数是正整数,则满足条件的整数a有几个?请写出过程.
热心网友
21x^2+ax+21实际上就是21的因数和21=1*21=3*721x^2+ax+21=(x+1)(21x+21) 42(x+21)(21x+1) 442(x+3)(21x+7) 70(x+7)(21x+3) 150(3x+21)(7x+1) 150(3x+1)(7x+21) 42(3x+3)(7x+7) 42(3x+7)(7x+3) 58(7x+1)(3x+21) 150(7x+21)(3x+1) 70(7x+3)(3x+7) 58(7x+7)(3x+3) 42(21x+1)(x+21) 442(21x+21)(x+1) 42(21x+3)(x+7) 150(21x+7)(x+3) 70实际上就是:±462 ±150 ±70 ±58 ±42 注意有负值
热心网友
解:5种21x^2+ax+21=(3x+m)(7x+n)或(x+m)(21x+n)=21x^2+3nx+7mx+mn或21x^2+nx+21mx+mn得3n+7m=a 21m+n=a mn=21或 mn=21m,n可取m n3 77 31 2121 1得a=58,42,150,70,442.所以5种