若f(x)=x^2+(lga+2)x+lgb,且f(-1)=-2,并对一切实数x,f(x)≥2x恒成立,这a=? b=? (过程)
热心网友
若f(x)=x^2+(lga+2)x+lgb,且f(-1)=-2,并对一切实数x,f(x)≥2x恒成立,这a=? b=? (过程)解:已知f(-1)=-2,f(x)=x^2+(lga+2)x+lgb-2=1-2-lga+lgblga-lgb=1lg(a/b)=1a=10b因为f(x)≥2x恒成立,所以x^2+(lga+2)x+lgb-2x=0x^2+(lga)x+lgb=0恒成立则(lga)^2-4lgb<=0(lg10b)^2-4lgb<=0(1+lgb)^2-4lgb<=0(lgb-1)^2<=0所以只能lgb-1=0,b=10那么a=100.