f(x)=x的平方-x+b 且f(log以2为底的a的对数)=blog2[f(a)]=2(a不等于1) 求f(log以2为底的x的对数)的最小值及对应的x的值

热心网友

f(log以2为底的a的对数)=bf(log以2为底的a的对数)= [log2(a)]^2 - log2(a) + b =b所以 [log2(a)]^2 - log2(a) = 0log2(a) * [log2(a) -1] = 0log2(a)=0 或 log2(a) = 1a = 1 或 a =2a=1 根据题目 舍去。a=2log2[f(a)]=2f(a) = 4a^2 - a + b =4a=2代入所以 b = 2f(log以2为底的x的对数)= [log2(x)]^2 - log2(x) + b= [log2(x) - 1/2)^2 + 7/4当 log2(x) - 1/2 = 0 即 x=√2 时,上式取最小值 7/4

热心网友

答的有条理,精彩!