已知公差大于0的等差数列{an}的前项和为Sn且a3*a4=117,a2+a5=22.1.求通项an.2.若数列{bn}是等差数列,且bn=Sn/(n+c),求非0常数c.3.在(2)条件下,求证:bn/(n+36)b(n+1)小于等于1/49.注:b(n+1)中(n+1)为下标

热心网友

(1)方法如楼上,但an=4n-3(2)Sn=n(2n-1),要使bn=Sn/(n+c)是等差数列,非0常数c为-(1/2),bn=2n(3)bn/(n+36)b(n+1)=n/((n+36)(n+1))=n/(n^2+37n+36)n^2+36=12n所以(n^2+37n+36)=49nbn/(n+36)b(n+1)小于等于1/49.

热心网友

(1):a2+a5=a3+a4=22 a3*a4=117 联立求解得a3=9或13,又由于公差大于0,则a3=9,a4=13,所以d=4,a1=1,所以an=4n+1