用函数极限的定义证明(x2+1)/(3*x2-x=1)极限为1/3(x2为x的平方)

热心网友

根据极限定义:对于任意小的正数e,存在N=max{2,1/(3e)},当x大于N时,|(x2+1)/(3x2-x+1)-1/3|=|(x+2)/(3(3x2-x+1))|<(x+x)/(3(3x2-x2+0))<2x/6x2=1/3x

热心网友

(x2+1)/(3*x2-x=1)极限(x-∞)=(1+1/x2)/(3-1/x+1/x2)极限(x-∞)=[1极限(x-∞)+1/x2极限(x-∞)]/[1极限(x-∞)-1/x极限(x-∞)+1/x2极限(x-∞)]=(1+0)/(3-0+0)=1/3