已知x y z=xyz 且x ,y,z,>0求证(y z)/x (x z)/y (x y)/z≥2倍根号3(1/x 1/y 1/z) 1/z)
热心网友
(y +z)/x+ (x+ z)/y+ (x+ y)/z≥2√3(1/x +1/y+ 1/z) 1。x +y+ z=xyz≤[( x +y+ z)/3]^3==x+y+z=xyz≥3√3==1-2√3/(xyz)≥1/3。2。(xy+zx+yz)(z+y+x)≥[√xyz+√xyz+√xyz]^2=9xyz=9[z+y+x]==xy+zx+yz≥9。3。(y +z)/x+ (x+ z)/y+ (x+ y)/z≥2√3(1/x +1/y+ 1/z)(xyz-x)/x+ (xyz-y)/y+ (xyz-z)/z≥2√3(xy+zx+yz)/(xyz)(xy+zx+yz)-3≥2√3(xy+zx+yz)/(xyz)(xy+zx+yz)[1-2√3/(xyz)]≥3。从1。2。==》3。的不等式(xy+zx+yz)[1-2√3/(xyz)]≥3成立,即推出(y +z)/x+ (x+ z)/y+ (x+ y)/z≥2√3(1/x +1/y+ 1/z)成立。。