求证:log2(π)+log5(π)>2
热心网友
log2(π)+log5(π)=lgπ/lg2+lgπ/lg5=(lg5lgπ+lg2lgπ)/lg2*lg5=lgπ(lg2+lg5)/lg2*lg5=log2(π)*log5(10)因为派大于2 ̄(3/2)即根号8 10大于5 ̄(3/2)即根号75所以log2(π)>1.5 log5(10)>1.5所以log2(π)+log5(π)2
热心网友
解:log2(π)+log5(π)=lgπ/lg2+lgπ/lg5=(lg5lgπ+lg2lgπ)/lg2*lg5=lgπ(lg2+lg5)/lg2*lg5=(lgπ/lg2)*lg5
热心网友
1. 原式=1/log(π)2 + 1/log(π)5 =log(π)10/[log(π)2 * 1/log(π)5],2. 分母用基本不等式得:log(π)2 * 1/log(π)54/log(π)10, 又因为log(π)102.