如果椭圆x^2/36+y^2/9=1的弦被点(4,2)平分,则弦所在的直线方程是什么?
热心网友
设弦所在的直线方程为y=kx+b ...(1),其与椭圆交于A(x1,y1),B(x2,y2)则, (x1+x2)/2 = 4, (y1+y2)/2 = 2即: x1+x2 = 8, y1+y2 = 4将(1)代入椭圆方程,化简,得:(9+36*k^2)*x^2 +72kbx +(36*b^2 -324) = 0== -72kb/(9+36*k^2) = x1+x2 = 8y1+y2 = 4 = k*(x1+x2) +2b解得: k = 1/2, b = -2因此, 设弦所在的直线方程为 y = x/2 -2, 即: x -2y = 4
热心网友
如果椭圆x^2/36+y^2/9=1的弦被点(4,2)平分,则弦所在的直线方程是什么? 解:设弦所在的直线方程为y-2=k(x-4) ,其与椭圆交于A(x1,y1),B(x2,y2)则 (x1+x2)/2 = 4, (y1+y2)/2 = 2即: x1+x2 = 8, y1+y2 = 4∵点A,B在椭圆x^2/36+y^2/9=1上,即在椭圆x^2+4y^2=36∴(x1)^2+4(y1)^2=36. .①(x2)^2+4(y2)^2=36. .②①-②得(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0即8(x1-x2)+4×4(y1-y2)=0所以(y1-y2)/(x1-x2)=-1/2即直线AB的斜率k=-1/2,∴弦所在的直线方程为y-2=-1/2(x-4) 即x+2y-8=0
热心网友
如果椭圆x^2/36+y^2/9=1的弦被点(4,2)平分,则弦所在的直线方程是什么?命点(4,2)为P。连接OP,其斜率为k1=1/2。则与其共轭的直径的斜率为k2=-b^2/(k1a^2)=-2*9/36=-1/2。则过P且斜率=k2的直线方程为:(y-2)/(x-4)=-1/2;或2y+x-8=0附:互相共轭的两直径,平分与其相共轭的直径平行的所有弦; 其斜率之积=-b^2/a^2.