填空题1. 已知菱形的周长是24cm,一个内角为60°,则边长为 cm,面积为__cm2.2. 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为____________.3. 菱形有_______条对称轴,对称轴之间具有___________的位置关系.4. 若菱形两条对角线长分别为6 cm和8 cm,则它的周长是________,面积是_________.5. 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为______________.6. 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是______________.7. 菱形的一边与两条对角线夹角的差是20°,那么菱形的各角的度数为_____________.8. 菱形的一个角是60°,边长是8 cm,那么菱形的两条对角线的长分别是____________.二. 选择题9. 菱形具有而一般四边形不具有的性质是 ( )A. 两组对边分别平行 B. 两组对边分别相等C. 一组邻边相等 D. 对角线相互平分10. 菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24cm2,则AE=6cm,则菱形ABCD的边长为 (  )A. 4 cm B. 5 cm C. 6 cm D. 7 cm11. 在菱形ABCD中,AE⊥BC, AF⊥CD,且BE=EC, CF=FD,则∠AEF等于 ( )A. 120° B. 45° C. 60° D. 150°12. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( )A. 45°, 135° B. 60°, 120°C. 90°, 90° D. 30°, 150°13. 在菱形ABCD中,若∠ADC=120°,则BD:AC等于 ( )A. :2 B. :3 C. 1:2 D. :1三. 解答题14. 如图:D为等腰直角△ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC, AD, AB于F, O, E,BC=2,若四边形AEDF为菱形,求CD的长.15. 如图:在菱形ABCD中,E为AD的中点,EF⊥AC交CB延长线于F,交AB于P,交AC于M,则有EF与AB相互平分,请说明理由.16. 如图:已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5.(1) 判断四边形AEDF的形状?(2) 它的周长是多少?四. 应用题17. 如图:已知菱形ABCD的周长为20 cm,面积为20 cm2,求对角线AC,BD的长.18. 如图:在△ABC中,点P自点A向点C运动,作PE∥CB交AB于点E,作PF∥CB交BC于点F. (1) 是否存在点P,使平行四边形PEBF是菱形? (2) 若存在作出,否则说明理由.19. 已知菱形ABCD中,∠A=30°, AB=10 cm.求: (1) AD和BC之间的距离.(2) 对角线AC和BD的乘积.五. 综合能力提高题20. 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.求: (1) ∠ABC的度数;(2) 对角线AC的长;(3) 菱形ABCD的面积. 如果打对会得200分 另1套题在 题一样 11月21日之前求解

热心网友

面积为18√3cm2.2。 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为 48 cm。3。 菱形有_2_条对称轴,对称轴之间具有__相互垂直__的位置关系。4。 若菱形两条对角线长分别为6 cm和8 cm,则它的周长是_20__,面积是_24 cm2_。5。 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为 6cm 。6。 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是30度和150度_。7。 菱形的一边与两条对角线夹角的差是20°,那么菱形的各角的度数为 35和55。8。 菱形的一个角是60°,边长是8 cm,那么菱形的两条对角线的长分别是 8 和4√3cm。二。 选择题9。 菱形具有而一般四边形不具有的性质是 ( A、C )A。 两组对边分别平行 B。 两组对边分别相等C。 一组邻边相等 D。 对角线相互平分10。 菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24cm2,则AE=6cm,则菱形ABCD的边长为 (A)A。 4 cm B。 5 cm C。 6 cm D。 7 cm11。 在菱形ABCD中,AE⊥BC, AF⊥CD,且BE=EC, CF=FD,则∠AEF等于 ( C)A。 120° B。 45° C。 60° D。 150°12。 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 (B )A。 45°, 135° B。 60°, 120°C。 90°, 90° D。 30°, 150°13。 在菱形ABCD中,若∠ADC=120°,则BD:AC等于 (C )A。 :2 B。 :3 C。 1:2 D。 :1三。 解答题14。 如图:D为等腰直角△ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC, AD, AB于F, O, E,BC=2,若四边形AEDF为菱形,求CD的长。CD=2/ (1+√2)15。 如图:在菱形ABCD中,E为AD的中点,EF⊥AC交CB延长线于F,交AB于P,交AC于M,则有EF与AB相互平分,请说明理由。答:∴EF∥BD, AD∥BC,∵∠BFP=∠AEP,∠FBP=∠PAE(内错角相等);∴EF∥BD和AE=ED,AP=PB。在△AEP和△BFP中,三顶角对应相等且AP=PB ∵△AEP≌△BFP;∵FP=PE。16。 如图:已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5。(1) 判断四边形AEDF的形状?(2) 它的周长是多少?四。 应用题17。 如图:已知菱形ABCD的周长为20 cm,面积为20 cm2,求对角线AC,BD的长。√20 cm,2√20 cm18。 如图:在△ABC中,点P自点A向点C运动,作PE∥CB交AB于点E,作PF∥CB交BC于点F。 (1) 是否存在点P,使平行四边形PEBF是菱形? (2) 若存在作出,否则说明理由。1。有。2。PB平分∠ABC时,平行四边形PEBF是菱形。19。 已知菱形ABCD中,∠A=30°, AB=10 cm。求: (1) AD和BC之间的距离。(2) 对角线AC和BD的乘积。(1) 5 cm。(2) 100 cm2五。 综合能力提高题20。 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a。求: (1) ∠ABC的度数;(2) 对角线AC的长;(3) 菱形ABCD的面积。 1。 ∠ABC=120度;2。 a√3;3。 a^2(√3/2)。

热心网友

1。 已知菱形的周长是24cm,一个内角为60°,则边长为6 cm,面积为18√3cm2.2。 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为48cm3。 菱形有2条对称轴,对称轴之间具有垂直的位置关系。4。 若菱形两条对角线长分别为6 cm和8 cm,则它的周长是20cm,面积是24cm25。 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为6cm6。 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是30°和50° 或60°和120°7。 菱形的一边与两条对角线夹角的差是20°,那么菱形的各角的度数为两个70°,两个110°8。 菱形的一个角是60°,边长是8 cm,那么菱形的两条对角线的长分别是8cm和8√3cm9。 菱形具有而一般四边形不具有的性质是 (D )A。 两组对边分别平行 B。 两组对边分别相等C。 一组邻边相等 D。 对角线相互平分10。 菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24cm2,则AE=6cm,则菱形ABCD的边长为 ( A )A。 4 cm B。 5 cm C。 6 cm D。 7 cm11。 在菱形ABCD中,AE⊥BC, AF⊥CD,且BE=EC, CF=FD,则∠AEF等于 (C )A。 120° B。 45° C。 60° D。 150°12。 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( B)A。 45°, 135° B。 60°, 120°C。 90°, 90° D。 30°, 150°13。 在菱形ABCD中,若∠ADC=120°,则BD:AC等于 (B )A。 :2 B。√3 :3 C。 1:2 D。 :114。 如图:D为等腰直角△ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC, AD, AB于F, O, E,BC=2,若四边形AEDF为菱形,求CD的长。解:菱形AEDF,AF∥ED,∠FAE=45°则∠DEB=45°而∠B=45°,所以BD=DE同样可得:CD=CF可得△CDF和△BDE都为等腰直角三角形菱形AEDF可知:DE=DF,所以BD=DFDF^2=CD^2+CF^2=2CD^2BD^2=2CD^2 则:BD=√2 CDBD+CD=BC=2√2 CD+CD=2CD=2√2-215。 如图:在菱形ABCD中,E为AD的中点,EF⊥AC交CB延长线于F,交AB于P,交AC于M,则有EF与AB相互平分,请说明理由。因为ABCD是菱形,所以BD⊥AC,看△ADB,EP⊥AC, 所以EP∥BD,根据三角形中线定理,E是AD中心,则P是AB的中心点,且EP=1/2BD。看FEDB四边形,EP(F)∥BD , ABCD是菱形,所以ED(AD)∥BF(BC),根据平行四边形判定,所以FEDB也是平行四边形,根据平行四边形的性质,对比相等,所以BD=FE,而EP=1/2BD=1/2FE,所以P也是FE的中心点,所以AB和FE相互平分。16。 如图:已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5。(1) 判断四边形AEDF的形状? 菱形(2) 它的周长是多少? 20 1) DE∥AC, DF∥AB,根据平行四边形的定义,则AEDF是平行四边形。因为DE∥AC,所以∠EDA=∠DAF, 因为AD平分∠BAC,所以∠DAF=∠DAE, 故而∠DAE=∠EDA,根据等角对等边定理,所以EA=ED, 根据菱形的定义,所以AEDF是菱形。 2)周长是5×4=2017。 如图:已知菱形ABCD的周长为20 cm,面积为20 cm2,求对角线AC,BD的长。AC与BD相乘为10。平方和为25,解出方程即可~ 解:根据菱形四边相等可得:菱形边长为20/4=5cm 菱形ABCD面积=20cm2 而其面积为2*△ABD面积=2*1/2BD*1/2AC=1/2BD*AC=20所以DB=40/AC 根据勾股定理得:(1/2AC)^2+(1/2BD)^2=AB^2即:1/4AC^2+1/4BD^2=AB^2 1/4AC^2+1/4(40/AC)^2=AB^2 AB=5 得: AB=5 则:1/4AC^2+400/AC^2=25 简化后得:AC^2+1600/AC^2=100 设AC^2=k 则得k+1600/k=100 那么:k^2+1600-100k=0 得:k1=80 k2=20 即:1)AC^2=80 AC1=4√5 则:BD1=40/AC1=2√52)AC^2=20 AC2=2√5 则:BD2=40/AC2=4√518。 如图:在△ABC中,点P自点A向点C运动,作PE∥CB交AB于点E,作PF∥CB交BC于点F。 (1) 是否存在点P,使平行四边形PEBF是菱形? (2) 若存在作出,否则说明理由。题目有问题解:(1)存在点P,能使平形四边形为菱形 (2)可作:∠ABC的角平分线交AC于P,即P点运动到:∠ABC的角平分线上时,该平 行四边形PEBF就为菱形 证明:PE∥CB得:∠EPB=∠PBF 而∠PBF=∠PBE,则∠EPB=∠EBP,因此BE=PE,所以该平行四边形为菱形19。 已知菱形ABCD中,∠A=30°, AB=10 cm。求: (1) AD和BC之间的距离。 5cm (2) 对角线AC和BD的乘积。 100解:(1)作BE⊥AD于E,则在Rt△ABE中,,∠A=30°,AB=10cm 则BE=1/2AB=1/2*10=5cm 即AD和BC之间的距离为5cm (2)菱形ABCD的面积=BC*BE 而BC=AB=10所以其面积为10*5=50cm2同样菱形ABCD的面积=2*△ABD面积=2*1/2BD*1/2AC=1/2BD*AC所以,1/2BD*AC=50cm2 BD*AC=100即:对角线AC和BD的乘各为10020。 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a。求: (1) ∠ABC的度数; 150° (2) 对角线AC的长; (√6-√2)a/2 (3) 菱形ABCD的面积。 2分之a平方 解: 1)AE=BE=1/2AB 由菱形ABCD知:AB=AD所以AE=1/2AD 而DE⊥AB 则△AED为直角三角形所以得∠ADE=30° 则∠BAD=60°由于∠DAB+∠ABC=180° 所以∠ABC=120° 2)∠BAD=60°AB=AD得:△ABD为等边三角形,所以BD=AB=a根据勾股定理:AB^2=(1/2AC)^2+(1/2BD)^2则:(1/2AC)^2=AB^2-(1/2BD)^2=a^2-1/4a^2=3/4a^2AC=√3*a 3)菱形ABCD面积=1/2AC*BD=1/2*√3*a*a==(√3/2)a^2 。

热心网友

1。 已知菱形的周长是24cm,一个内角为60°,则边长为 6cm,面积为18√3 cm2.2。 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为48cm。3。 菱形有2条对称轴,对称轴之间具有_垂直平分的位置关系。4。 若菱形两条对角线长分别为6 cm和8 cm,则它的周长是20cm,面积是24cm2。5。 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为6cm。6。 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是135° 45°。7。 菱形的一边与两条对角线夹角的差是20°,那么菱形的各角的度数为110°70°。8。 菱形的一个角是60°,边长是8 cm,那么菱形的两条对角线的长分别是8cm 8√3cm。二。 选择题9。 菱形具有而一般四边形不具有的性质是 ( C)A。 两组对边分别平行 B。 两组对边分别相等C。 一组邻边相等 D。 对角线相互平分10。 菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24cm2,则AE=6cm,则菱形ABCD的边长为 ( A )A。 4 cm B。 5 cm C。 6 cm D。 7 cm11。 在菱形ABCD中,AE⊥BC, AF⊥CD,且BE=EC, CF=FD,则∠AEF等于 ( C )A。 120° B。 45° C。 60° D。 150°12。 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( B )A。 45°, 135° B。 60°, 120°C。 90°, 90° D。 30°, 150°13。 在菱形ABCD中,若∠ADC=120°,则BD:AC等于 ( 1:√3 )A。 :2 B。 :3 C。 1:2 D。 :1三。 解答题14。 如图:D为等腰直角△ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC, AD, AB于F, O, E,BC=2,若四边形AEDF为菱形,求CD的长。解:菱形AEDF,AF∥ED,∠FAE=45°则∠DEB=45°而∠B=45°,所以BD=DE同样可得:CD=CF可得△CDF和△BDE都为等腰直角三角形菱形AEDF可知:DE=DF,所以BD=DFDF^2=CD^2+CF^2=2CD^2BD^2=2CD^2 则:BD=√2 CDBD+CD=BC=2√2 CD+CD=2CD=2√2-215。 如图:在菱形ABCD中,E为AD的中点,EF⊥AC交CB延长线于F,交AB于P,交AC于M,则有EF与AB相互平分,请说明理由。证明:菱形ABCD中,AD∥BC,则∠EAP=∠FBPE为AD的中点且EF⊥AC,AE=AP则P为AB的中点,所以AP=PB∠APE=∠BPF所以△APE≌△BPF所以PE=PF,而AP=PB 所以EF与AB相互平分16。 如图:已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5。(1) 判断四边形AEDF的形状?(2) 它的周长是多少?(1)证明:DE∥AC,则∠EDA=∠DAF而AD平分∠EAC得:∠EAD=∠FAD所以得:∠EAD=∠EDA,则1)AE=DE同样可得:2)AF=DFDE∥AC, DF∥AB得3)平行四边形AEDF所以根据1) 2) 3)可知该四边形为菱形(2)解:AE=5 因为菱形四边相等则可得它的周长为4*5=20四。 应用题17。 如图:已知菱形ABCD的周长为20 cm,面积为20 cm2,求对角线AC,BD的长。解:根据菱形四边相等可得:菱形边长为20/4=5cm菱形ABCD面积=20cm2 而其面积为2*△ABD面积=2*1/2BD*1/2AC=1/2BD*AC=20所以DB=40/AC根据勾股定理得:(1/2AC)^2+(1/2BD)^2=AB^2即:1/4AC^2+1/4BD^2=AB^21/4AC^2+1/4(40/AC)^2=AB^2 AB=5 得:AB=5 则:1/4AC^2+400/AC^2=25 简化后得:AC^2+1600/AC^2=100设AC^2=k 则得k+1600/k=100 那么:k^2+1600-100k=0得:k1=80 k2=20即:1)AC^2=80 AC1=4√5 则:BD1=40/AC1=2√52)AC^2=20 AC2=2√5 则:BD2=40/AC2=4√518。 如图:在△ABC中,点P自点A向点C运动,作PE∥CB交AB于点E,作PF∥AB交BC于点F。 (1) 是否存在点P,使平行四边形PEBF是菱形? (2) 若存在作出,否则说明理由。解:(1)存在点P,能使平形四边形为菱形(2)可作:∠ABC的角平分线交AC于P,即P点运动到:∠ABC的角平分线上时,该平行四边形PEBF就为菱形证明:PE∥CB得:∠EPB=∠PBF而∠PBF=∠PBE,则∠EPB=∠EBP,因此BE=PE,所以该平行四边形为菱形19。 已知菱形ABCD中,∠A=30°, AB=10 cm。求: (1) AD和BC之间的距离。(2) 对角线AC和BD的乘积。解:(1)作BE⊥AD于E,则在Rt△ABE中,,∠A=30°,AB=10cm 则BE=1/2AB=1/2*10=5cm 即AD和BC之间的距离为5cm(2)菱形ABCD的面积=BC*BE 而BC=AB=10所以其面积为10*5=50cm2同样菱形ABCD的面积=2*△ABD面积=2*1/2BD*1/2AC=1/2BD*AC所以,1/2BD*AC=50cm2 BD*AC=100即:对角线AC和BD的乘各为100五。 综合能力提高题20。 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a。求: (1) ∠ABC的度数;(2) 对角线AC的长;(3) 菱形ABCD的面积。 解:(1)AE=BE=1/2AB 由菱形ABCD知:AB=AD所以AE=1/2AD 而DE⊥AB 则△AED为直角三角形所以得∠ADE=30° 则∠BAD=60°由于∠DAB+∠ABC=180° 所以∠ABC=120°(2)∠BAD=60°AB=AD得:△ABD为等边三角形,所以BD=AB=a根据勾股定理:AB^2=(1/2AC)^2+(1/2BD)^2则:(1/2AC)^2=AB^2-(1/2BD)^2=a^2-1/4a^2=3/4a^2AC=√3*a(3)菱形ABCD面积=1/2AC*BD=1/2*√3*a*a==(√3/2)a^2 。

热心网友

图在哪?

热心网友

我觉得这种问题没多大的意义。还是不问的好!

热心网友

你是不是把你的作业拿来让我们做?

热心网友

这么多啊我都看晕了~~~~!

热心网友

老师没有给你答案啊?直接找老师好了,叫他给你做一份答案。:)

热心网友

我靠,你有病啊,在怎么着,你也不用弄这么多啊会累死人的

热心网友

就這也要??﹐我看你?是少花點?r間上網﹐多讀點?伞?

热心网友

那么多,我没时间呀

热心网友

1。边长 6, 面积18√32。48cm3。 2, 垂直4。 周长20, 面积245。 3cm6。 30 和1507。 110 和708。 8和8√39。 C10。 A11。 C13。 B 1: √314。 4-2√2。 AEDF菱形的内角是45度和135度。△BDE和△CDF也是等腰直角三角形。菱形的4条边都相等,所以,CD=DF=DE=√2BD, 而BD+CD=BC=2。 所以CD=4-2√215。 因为ABCD是菱形,所以BD⊥AC,看△ADB,EP⊥AC, 所以EP∥BD,根据三角形中线定理,E是AD中心,则P是AB的中心点,且EP=1/2BD。看FEDB四边形,EP(F)∥BD , ABCD是菱形,所以ED(AD)∥BF(BC),根据平行四边形判定,所以FEDB也是平行四边形,根据平行四边形的性质,对比相等,所以BD=FE,而EP=1/2BD=1/2FE,所以P也是FE的中心点,所以AB和FE相互平分。请多多指教。 。

热心网友

1。边长 6, 面积18√32。48cm3。 2, 垂直4。 周长20, 面积245。 3cm6。 30 和1507。 110 和708。 8和8√39。 C10。 A11。 C13。 B 1: √314。 4-2√2。 AEDF菱形的内角是45度和135度。△BDE和△CDF也是等腰直角三角形。菱形的4条边都相等,所以,CD=DF=DE=√2BD, 而BD+CD=BC=2。 所以CD=4-2√215。 因为ABCD是菱形,所以BD⊥AC,看△ADB,EP⊥AC, 所以EP∥BD,根据三角形中线定理,E是AD中心,则P是AB的中心点,且EP=1/2BD。看FEDB四边形,EP(F)∥BD , ABCD是菱形,所以ED(AD)∥BF(BC),根据平行四边形判定,所以FEDB也是平行四边形,根据平行四边形的性质,对比相等,所以BD=FE,而EP=1/2BD=1/2FE,所以P也是FE的中心点,所以AB和FE相互平分。。

热心网友

热心网友

前面很多人都准确地告诉你答案了,你要记住菱形的性质,如:"菱形的边长等长"等等,以后再遇到类似的题目就会计算了.

热心网友

好多...

热心网友

1。边长 6, 面积18√32。48cm3。 2, 垂直4。 周长20, 面积245。 3cm6。 30 和1507。 110 和708。 8和8√39。 C10。 A11。 C13。 B 1: √314。 4-2√2。 AEDF菱形的内角是45度和135度。△BDE和△CDF也是等腰直角三角形。菱形的4条边都相等,所以,CD=DF=DE=√2BD, 而BD+CD=BC=2。 所以CD=4-2√215。 因为ABCD是菱形,所以BD⊥AC,看△ADB,EP⊥AC, 所以EP∥BD,根据三角形中线定理,E是AD中心,则P是AB的中心点,且EP=1/2BD。看FEDB四边形,EP(F)∥BD , ABCD是菱形,所以ED(AD)∥BF(BC),根据平行四边形判定,所以FEDB也是平行四边形,根据平行四边形的性质,对比相等,所以BD=FE,而EP=1/2BD=1/2FE,所以P也是FE的中心点,所以AB和FE相互平分。请多多指教。

热心网友

1。边长 6, 面积18√32。48cm3。 2, 垂直4。 周长20, 面积245。 3cm6。 30 和1507。 110 和708。 8和8√39。 C10。 A11。 C13。 B 1: √314。 4-2√2。 AEDF菱形的内角是45度和135度。△BDE和△CDF也是等腰直角三角形。菱形的4条边都相等,所以,CD=DF=DE=√2BD, 而BD+CD=BC=2。 所以CD=4-2√215。 因为ABCD是菱形,所以BD⊥AC,看△ADB,EP⊥AC, 所以EP∥BD,根据三角形中线定理,E是AD中心,则P是AB的中心点,且EP=1/2BD。看FEDB四边形,EP(F)∥BD , ABCD是菱形,所以ED(AD)∥BF(BC),根据平行四边形判定,所以FEDB也是平行四边形,根据平行四边形的性质,对比相等,所以BD=FE,而EP=1/2BD=1/2FE,所以P也是FE的中心点,所以AB和FE相互平分。。

热心网友

填空题1。 已知菱形的周长是24cm,一个内角为60°,则边长为6 cm,面积为18√3cm2.2。 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为48cm3。 菱形有2条对称轴,对称轴之间具有垂直的位置关系。4。 若菱形两条对角线长分别为6 cm和8 cm,则它的周长是20cm,面积是24cm25。 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为6cm6。 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是30°和50° 或60°和120°7。 菱形的一边与两条对角线夹角的差是20°,那么菱形的各角的度数为两个70°,两个110°8。 菱形的一个角是60°,边长是8 cm,那么菱形的两条对角线的长分别是8cm和8√3cm二。 选择题9。 菱形具有而一般四边形不具有的性质是 (D )A。 两组对边分别平行 B。 两组对边分别相等C。 一组邻边相等 D。 对角线相互平分10。 菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24cm2,则AE=6cm,则菱形ABCD的边长为 ( A )A。 4 cm B。 5 cm C。 6 cm D。 7 cm11。 在菱形ABCD中,AE⊥BC, AF⊥CD,且BE=EC, CF=FD,则∠AEF等于 (C )A。 120° B。 45° C。 60° D。 150°12。 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( B)A。 45°, 135° B。 60°, 120°C。 90°, 90° D。 30°, 150°13。 在菱形ABCD中,若∠ADC=120°,则BD:AC等于 (B )A。 :2 B。√3 :3 C。 1:2 D。 :1三。 解答题14。 如图:D为等腰直角△ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC, AD, AB于F, O, E,BC=2,若四边形AEDF为菱形,求CD的长。解:菱形AEDF,AF∥ED,∠FAE=45°则∠DEB=45°而∠B=45°,所以BD=DE同样可得:CD=CF可得△CDF和△BDE都为等腰直角三角形菱形AEDF可知:DE=DF,所以BD=DFDF^2=CD^2+CF^2=2CD^2BD^2=2CD^2 则:BD=√2 CDBD+CD=BC=2√2 CD+CD=2CD=2√2-215。 如图:在菱形ABCD中,E为AD的中点,EF⊥AC交CB延长线于F,交AB于P,交AC于M,则有EF与AB相互平分,请说明理由。因为ABCD是菱形,所以BD⊥AC,看△ADB,EP⊥AC, 所以EP∥BD,根据三角形中线定理,E是AD中心,则P是AB的中心点,且EP=1/2BD。看FEDB四边形,EP(F)∥BD , ABCD是菱形,所以ED(AD)∥BF(BC),根据平行四边形判定,所以FEDB也是平行四边形,根据平行四边形的性质,对比相等,所以BD=FE,而EP=1/2BD=1/2FE,所以P也是FE的中心点,所以AB和FE相互平分。16。 如图:已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5。(1) 判断四边形AEDF的形状?菱形(2) 它的周长是多少?20四。 应用题17。 如图:已知菱形ABCD的周长为20 cm,面积为20 cm2,求对角线AC,BD的长。AC与BD相乘为10。平方和为25,解出方程即可~18。 如图:在△ABC中,点P自点A向点C运动,作PE∥CB交AB于点E,作PF∥CB交BC于点F。 (1) 是否存在点P,使平行四边形PEBF是菱形? (2) 若存在作出,否则说明理由。题目有问题19。 已知菱形ABCD中,∠A=30°, AB=10 cm。求: (1) AD和BC之间的距离。5cm (2) 对角线AC和BD的乘积。100五。 综合能力提高题20。 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a。求: (1) ∠ABC的度数;150°(2) 对角线AC的长;(√6-√2)a/2(3) 菱形ABCD的面积。 2分之a平方。

热心网友

1。 已知菱形的周长是24cm,一个内角为60°,则边长为 6cm,面积为18√3cm2.2。 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为 48 cm。3。 菱形有_2_条对称轴,对称轴之间具有__相互垂直__的位置关系。4。 若菱形两条对角线长分别为6 cm和8 cm,则它的周长是_20__,面积是_24 cm2_。5。 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为 6cm 。6。 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是30度和150度_。7。 菱形的一边与两条对角线夹角的差是20°,那么菱形的各角的度数为 35和55。8。 菱形的一个角是60°,边长是8 cm,那么菱形的两条对角线的长分别是 8 和4√3cm。二。 选择题9。 菱形具有而一般四边形不具有的性质是 ( A、C )A。 两组对边分别平行 B。 两组对边分别相等C。 一组邻边相等 D。 对角线相互平分10。 菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24cm2,则AE=6cm,则菱形ABCD的边长为 (A)A。 4 cm B。 5 cm C。 6 cm D。 7 cm11。 在菱形ABCD中,AE⊥BC, AF⊥CD,且BE=EC, CF=FD,则∠AEF等于 ( C)A。 120° B。 45° C。 60° D。 150°12。 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 (B )A。 45°, 135° B。 60°, 120°C。 90°, 90° D。 30°, 150°13。 在菱形ABCD中,若∠ADC=120°,则BD:AC等于 (C )A。 :2 B。 :3 C。 1:2 D。 :1三。 解答题14。 如图:D为等腰直角△ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC, AD, AB于F, O, E,BC=2,若四边形AEDF为菱形,求CD的长。CD=2/ (1+√2)15。 如图:在菱形ABCD中,E为AD的中点,EF⊥AC交CB延长线于F,交AB于P,交AC于M,则有EF与AB相互平分,请说明理由。答:∴EF∥BD, AD∥BC,∵∠BFP=∠AEP,∠FBP=∠PAE(内错角相等);∴EF∥BD和AE=ED,AP=PB。在△AEP和△BFP中,三顶角对应相等且AP=PB ∵△AEP≌△BFP;∵FP=PE。16。 如图:已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5。(1) 判断四边形AEDF的形状?(2) 它的周长是多少?四。 应用题17。 如图:已知菱形ABCD的周长为20 cm,面积为20 cm2,求对角线AC,BD的长。√20 cm,2√20 cm18。 如图:在△ABC中,点P自点A向点C运动,作PE∥CB交AB于点E,作PF∥CB交BC于点F。 (1) 是否存在点P,使平行四边形PEBF是菱形? (2) 若存在作出,否则说明理由。1。有。2。PB平分∠ABC时,平行四边形PEBF是菱形。19。 已知菱形ABCD中,∠A=30°, AB=10 cm。求: (1) AD和BC之间的距离。(2) 对角线AC和BD的乘积。(1) 5 cm。(2) 100 cm2五。 综合能力提高题20。 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a。求: (1) ∠ABC的度数;(2) 对角线AC的长;(3) 菱形ABCD的面积。 1。 ∠ABC=120度;2。 a√3;3。 a^2(√3/2)。

热心网友

填空题1。 已知菱形的周长是24cm,一个内角为60°,则边长为 6cm,面积为18√3 cm2.2。 菱形的一个内角为120°,平分这个内角的一条对角线长为12 cm,则菱形的周长为48cm。3。 菱形有2条对称轴,对称轴之间具有_垂直平分的位置关系。4。 若菱形两条对角线长分别为6 cm和8 cm,则它的周长是20cm,面积是24cm2。5。 若菱形两邻角的比为1:2,周长为24 cm,则较短对角线的长为6cm。6。 若从菱形的一个顶点到对边的距离等于边长的一半,则菱形两相邻内角的度数分别是135° 45°。7。 菱形的一边与两条对角线夹角的差是20°,那么菱形的各角的度数为110°70°。8。 菱形的一个角是60°,边长是8 cm,那么菱形的两条对角线的长分别是8cm 8√3cm。二。 选择题9。 菱形具有而一般四边形不具有的性质是 ( C)A。 两组对边分别平行 B。 两组对边分别相等C。 一组邻边相等 D。 对角线相互平分10。 菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24cm2,则AE=6cm,则菱形ABCD的边长为 ( A )A。 4 cm B。 5 cm C。 6 cm D。 7 cm11。 在菱形ABCD中,AE⊥BC, AF⊥CD,且BE=EC, CF=FD,则∠AEF等于 ( C )A。 120° B。 45° C。 60° D。 150°12。 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( B )A。 45°, 135° B。 60°, 120°C。 90°, 90° D。 30°, 150°13。 在菱形ABCD中,若∠ADC=120°,则BD:AC等于 ( 1:√3 )A。 :2 B。 :3 C。 1:2 D。 :1三。 解答题14。 如图:D为等腰直角△ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC, AD, AB于F, O, E,BC=2,若四边形AEDF为菱形,求CD的长。解:菱形AEDF,AF∥ED,∠FAE=45°则∠DEB=45°而∠B=45°,所以BD=DE同样可得:CD=CF可得△CDF和△BDE都为等腰直角三角形菱形AEDF可知:DE=DF,所以BD=DFDF^2=CD^2+CF^2=2CD^2BD^2=2CD^2 则:BD=√2 CDBD+CD=BC=2√2 CD+CD=2CD=2√2-215。 如图:在菱形ABCD中,E为AD的中点,EF⊥AC交CB延长线于F,交AB于P,交AC于M,则有EF与AB相互平分,请说明理由。证明:菱形ABCD中,AD∥BC,则∠EAP=∠FBPE为AD的中点且EF⊥AC,AE=AP则P为AB的中点,所以AP=PB∠APE=∠BPF所以△APE≌△BPF所以PE=PF,而AP=PB 所以EF与AB相互平分16。 如图:已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5。(1) 判断四边形AEDF的形状?(2) 它的周长是多少?(1)证明:DE∥AC,则∠EDA=∠DAF而AD平分∠EAC得:∠EAD=∠FAD所以得:∠EAD=∠EDA,则1)AE=DE同样可得:2)AF=DFDE∥AC, DF∥AB得3)平行四边形AEDF所以根据1) 2) 3)可知该四边形为菱形(2)解:AE=5 因为菱形四边相等则可得它的周长为4*5=20四。 应用题17。 如图:已知菱形ABCD的周长为20 cm,面积为20 cm2,求对角线AC,BD的长。解:根据菱形四边相等可得:菱形边长为20/4=5cm菱形ABCD面积=20cm2 而其面积为2*△ABD面积=2*1/2BD*1/2AC=1/2BD*AC=20所以DB=40/AC根据勾股定理得:(1/2AC)^2+(1/2BD)^2=AB^2即:1/4AC^2+1/4BD^2=AB^21/4AC^2+1/4(40/AC)^2=AB^2 AB=5 得:AB=5 则:1/4AC^2+400/AC^2=25 简化后得:AC^2+1600/AC^2=100设AC^2=k 则得k+1600/k=100 那么:k^2+1600-100k=0得:k1=80 k2=20即:1)AC^2=80 AC1=4√5 则:BD1=40/AC1=2√52)AC^2=20 AC2=2√5 则:BD2=40/AC2=4√518。 如图:在△ABC中,点P自点A向点C运动,作PE∥CB交AB于点E,作PF∥AB交BC于点F。 (1) 是否存在点P,使平行四边形PEBF是菱形? (2) 若存在作出,否则说明理由。解:(1)存在点P,能使平形四边形为菱形(2)可作:∠ABC的角平分线交AC于P,即P点运动到:∠ABC的角平分线上时,该平行四边形PEBF就为菱形证明:PE∥CB得:∠EPB=∠PBF而∠PBF=∠PBE,则∠EPB=∠EBP,因此BE=PE,所以该平行四边形为菱形19。 已知菱形ABCD中,∠A=30°, AB=10 cm。求: (1) AD和BC之间的距离。(2) 对角线AC和BD的乘积。解:(1)作BE⊥AD于E,则在Rt△ABE中,,∠A=30°,AB=10cm 则BE=1/2AB=1/2*10=5cm 即AD和BC之间的距离为5cm(2)菱形ABCD的面积=BC*BE 而BC=AB=10所以其面积为10*5=50cm2同样菱形ABCD的面积=2*△ABD面积=2*1/2BD*1/2AC=1/2BD*AC所以,1/2BD*AC=50cm2 BD*AC=100即:对角线AC和BD的乘各为100五。 综合能力提高题20。 如图:菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a。求: (1) ∠ABC的度数;(2) 对角线AC的长;(3) 菱形ABCD的面积。 解:(1)AE=BE=1/2AB 由菱形ABCD知:AB=AD所以AE=1/2AD 而DE⊥AB 则△AED为直角三角形所以得∠ADE=30° 则∠BAD=60°由于∠DAB+∠ABC=180° 所以∠ABC=120°(2)∠BAD=60°AB=AD得:△ABD为等边三角形,所以BD=AB=a根据勾股定理:AB^2=(1/2AC)^2+(1/2BD)^2则:(1/2AC)^2=AB^2-(1/2BD)^2=a^2-1/4a^2=3/4a^2AC=√3*a(3)菱形ABCD面积=1/2AC*BD=1/2*√3*a*a==(√3/2)a^2。

热心网友

我晕..那么多...谁有那么多时间啊...你应该分开问...那样大家回答的机率大些..